ГЛАВНАЯ   МАТЕМАТИКА

ПРИЗНАКИ ДЕЛИМОСТИ ЧИСЕЛ

      Для удобства пользования, признаки делимости чисел на 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 представлены в таблице. Кроме этих признаков делимости чисел, существуют признаки делимости и на другие числа. Примеры проверки делимости целых чисел с применением правил, приведенных в таблице делимости чисел, находятся под таблицей делимости чисел.

Таблица признаков делимости чисел. Делимость чисел, признаки делимости. Признаки делимости целых чисел на 2 (два), 3 (три), 4 (четыре), 5 (пять), 6 (шесть), 7 (семь), 8 (восемь), 9 (девять), 10 (десять), 11 (одиннадцать). Четные и нечетные числа. Таблица. Скачать бесплатно таблицу.

      На 2 (два) делятся все числа, у которых последней цифрой является 0 (ноль), 2 (два), 4 (четыре), 6 (шесть), 8 (восемь). Другими словами, если число оканчивается на ноль, два, четыре, шесть, восемь, то оно делится на два. Например: числа 120 (сто двадцать), 52 (пятьдесят два), 274 (двести семьдесят четыре), 16 (шестнадцать), 2 098 (две тысячи девяносто восемь) делятся на 2 (два). Числа 101 (сто один), 13 (тринадцать), 7 565 (семь тысяч пятьсот шестьдесят пять), 7 (семь), 19 (девятнадцать) не делятся на 2 (два), поскольку при делении этих чисел в остатке остается одна 1 (единица).

      Если число делится на 2 (два), то его называют четным числом. Если же число не делится на 2 (два), то такое число называют нечетным. Все четные числа оканчиваются на одну из следующих цифр: 0, 2, 4, 6, 8. Все нечетные числа оканчиваются цифрой 1, 3, 5, 7, 9. Понятие четные и нечетные числа - одно из основных понятий математики. Примером применения четных и нечетных чисел в повседневной жизни могут служить расписания движения поездов, когда поезда отправляются только по четным или только по нечетным числам.

      На 3 (три) делятся числа, у которых сумма цифр делится на 3 (три). Число 159 (сто пятьдесят девять) делится на 3 (три), поскольку сумма его цифр
1 + 5 + 9 = 15
(пятнадцать) делится на 3 (три)
15 : 3 = 5
и дает в результате 5 (пять). Если разделить на 3 (три) взятое нами число
159 : 3 = 53
получится пятьдесят три.

Признак делимости на 3 (три) распространяется и на сумму цифр любого числа. Проверим делимость на 3 числа 1 234 567 890 (один триллион двести тридцать четыре миллиона пятьсот шестьдесят тысяч восемьсот девяносто). Находим сумму цифр этого числа
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 0 = 45
Еще раз находим сумму цифр для числа 45 (сорок пять):
4 + 5 = 9
Число 9 (девять)делится на 3 и дает в результате число 3. Следовательно, число 1 234 567 890 делится на 3:
1 234 567 890 : 3 = 411 522 630
в результате получится четыреста одиннадцать миллионов пятьсот двадцать две тысячи шестьсот тридцать.

Рассмотрим еще один пример. Проверим делимость на 3 числа 29 443 680 100 259 (двадцать девять триллионов четыреста сорок три миллиарда шестьсот восемьдесят миллионов сто тысяч двести пятьдесят девять). Находим сумму цифр:
2 + 9 + 4 + 4 + 3 + 6 + 8 + 0 + 1 + 0 + 0 + 2 + 5 + 9 = 53
Теперь находим сумму цифр числа 53 (пятьдесят три):
5 + 3 = 8
Число 8 не делится на число 3, следовательно число 29 443 680 100 259 не может быть поделено на число 3 без остатка:
29 443 680 100 259 : 3 = 9 814 560 033 419 и 2 в остатке
(девять триллионов восемьсот четырнадцать миллиардов пятьсот шестьдесят миллионов тридцать три тысячи четыреста девятнадцать и два в остатке).

      На 4 (четыре) делятся числа, у которых две последние цифры нули или образуют число, делящееся на 4 (четыре). Специально для проверки делимости чисел на 4 на отдельной странице размещена таблица умножения на 4 первых тридцати натуральных чисел. На этой же странице приведены математические примеры определения делимости чисел на 4 (четыре).

      Признаки делимости целых чисел: на 5 (пять) делятся числа, которые оканчиваются цифровой 0 (нуль) или 5 (пять). Число 590 (пятьсот девяносто) делится на 5 (пять), поскольку оно оканчивается на цифру 0 (ноль):
590 : 5 = 118
в результате деления получается сто восемнадцать.

Число 1 375 (тысяча триста семьдесят пять) так же делится на 5 (пять), так как оно оканчивается цифрой 5 (пять):
1 375 : 5 = 275
в математическом результате деления частное составит двести семьдесят пять.

      На 6 (шесть) делятся числа, если одновременно соблюдаются признаки делимости на 2 (два) и на 3 (три). Другими словами, на 6 делятся все четные числа, сумма цифр которых делится на 3 (три). Например, число 948 (девятьсот сорок восемь) делится на 6 (шесть), поскольку оно является четным и сумма его цифр делится на 3 (три):
9 + 4 + 8 = 21
Снова находим сумму цифр числа 21 (двадцать один):
2 + 1 = 3
В математике деление взятого нами числа 948 (девятьсот сорок восемь) на 6 (шесть) можно записать так:
948 : 6 = 158
в результате получается число сто пятьдесят восемь.

      На 7 (семь) делятся числа, у которых разность между числом десятков и удвоенной цифрой единиц делится на 7 (семь). Для начала рассмотрим число 14 (четырнадцать). В этом числе 1 (один) десяток и 4 (четыре) единицы. Проверим его делимость по математическим правилам, соблюдая порядок выполнения математических действий:
1 - 4 х 2 = 1 - 8 = -7
Число -7 (минус семь) делится на 7 (семь) и дает в результате -1 (минус единицу). Следовательно, число 14 (четырнадцать) так же делится на 7 (семь):
14 : 7 = 2
в результате получается два.

Теперь рассмотрим делимость числа 21 (двадцать один). Здесь мы имеем 2 (два) десятка и 1 (одну) единицу. Проверяем делимость этого числа на 7 (семь): 2 - 1 х 2 = 2 - 2 = 0
Число 0 (нуль)делится не только на 7 (семь), но и на все числа, и дает в результате 0 (нуль). Таким образом, число 21 (двадцать один) делится на 7 (семь):
21 : 7 = 3
частное равняется трем.

В заключение рассмотрим более сложный пример признака делимости на 7 (семь). Проверим делимость числа 86 576 (восемьдесят шесть тысяч пятьсот семьдесят шесть). В этом числе 8 657 (восемь тысяч шестьсот пятьдесят семь) десятков и 6 (шесть) единиц. Приступаем к проверке делимости этого числа на 7 (семь):
8657 - 6 х 2 = 8657 - 12 = 8645
Снова проверяем делимость на 7 (семь), теперь уже полученного нами числа 8 645 (восемь тысяч шестьсот сорок пять). Теперь у нас 864 (восемь шестьдесят четыре) десятка и 5 (пять) единиц:
864 - 5 х 2 = 864 - 10 = 854
Опять повторяем наши действия для числа 854 (восемьсот пятьдесят четыре), в котором 85 (восемьдесят пять) десятков и 4 (четыре) единицы:
85 - 4 х 2 = 85 - 8 = 77
В принципе, уже невооруженным глазом видно, что число 77 (семьдесят семь) делится на 7 (семь) и в результате получается 11 (одиннадцать). Для не верящих сделаем последний шаг, с 7 (семью) десятками и 7 (семью) единицами:
7 - 7 х 2 = 7 - 14 = -7
Подобный результат мы уже рассматривали выше.
После длительного математического исследования нам удалось установить, что число 86 576 (восемьдесят шесть тысяч пятьсот семьдесят шесть) делится на на 7 (семь):
86576 : 7 = 12368
в результате деления получаем двенадцать тысяч триста шестьдесят восемь.

      На 8 (восемь) делятся числа, у которых три последние цифры нули или образуют число, делящееся на 8 (восемь). Проверить делимость чисел на 8 можно, воспользовавшись таблицей умножения на 8, составленной для первых ста пятидесяти натуральных чисел. Математическая таблица умножения охватывает все трехзначные результаты умножения чисел на 8. Примеры определения делимости чисел на 8 (восемь) приведены на этой же странице.

      Простые числа до 2803, которые делятся только на единицу и сами на себя представлены в таблице простых чисел на отдельной странице.

      23 октября 2009 года - 21 января 2015 года.

Rambler's Top100 Рейтинг@Mail.ru

© 2006 - 2015 Николай Хижняк. Все права защишены.